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An aspect of the laminar far wake behind a symmetrical two-dimensional body 
placed in a uniform shear flow is described theoretically by means of the Oseen 
type of successive approximation, in which the shear is regarded as a small 
perturbation on a uniform stream. The expression for the stream function is 
determined up to the third approximation both in and outside the wake region, 
and the region in which the results of the perturbation analysis are valid is also 
determined. The stream function is found to  contain four constants which cannot 
be determined from the boundary conditions for the far wake. The analysis also 
shows that the spreading of the wake is greater towards the side of smaller 
velocity than the side of larger velocity, the asymmetrical feature of the velocity 
defect becoming more evident as the distance from the obstacle is increased: 
the point which shows the maximum velocity defect shifts to the low-velocity 
side. 

1. Introduction 
The laminar flow field at large distances from a finite body located in a 

uniform flow of an incompressible viscous fluid is of basic importance and has 
been theoretically treated by many investigators. Imai (1951), among others, 
made a detailed analysis of the two-dimensional far flow field for an arbitrary 
Reynolds number, based on the Oseen type of approximation of the Navier- 
Stokes equations. The same problem was considered by Chang (1961) by means 
of matched asymptotic expansions of the co-ordinate type. Childress (1961) 
subsequently considered axially symmetric and general three-dimensional far 
flow fields by the same method. 

There are many examples in practice, however, where a parallel flow of fluid 
is non-uniform to the extent that velocity varies in magnitude across the stream. 
Such a flow exhibits shear characteristics, a typical example being the flow in the 
presence of a plane solid boundary, where the velocity increases with distance 
from the boundary. In  an attempt to obtain the low Reynolds number flow around 
a circular cylinder placed in a uniform shear flow, Bretherton (1962) considered 
the two-dimensional flow at large distances from the cylinder. Hunt (1971) 
obtained a solution for the laminar wake far downstream of a cylindrical body 
placed with its generators perpendicular to the flow on a surface above whioh 
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there is a simple shear flow described by u = Gy, where y is the distance normal 
to the surface, G is a constant velocity gradient and u is the velocity component 
along the surface. An important difference between the velocity in this wake 
and in those behind bodies in a uniform flow is that here the perturbation 
velocity decreases with distance downstream (say, x) in proportion to x-l as 
opposed to x-* in the latter case. In  the solutions of Bretherton and Hunt the 
velocity profile in the wakes is described by the similarity variable y/x* as 
opposed to y / d  in the case of a uniform flow. In  this connexion, it should be 
remarked that their analyses are deliberately restricted to the case where the 
shear is the dominant feature of the flow. The wakes are fundamentally different 
from those behind bodies in a uniform stream, which cannot be deduced from their 
results as a special case. 

In  reality, however, there will be a lot of cases or regions of flow in which the 
effect of shear on the development of wakes can be interpreted as a small perturba- 
tion to the wakes behind bodies placed in a uniform stream. A theoretical analy- 
sis of such wakes is the subject of the present paper and will correspond to an 
opposite extreme of the cases which were treated by Bretherton and Hunt. The 
present work has resulted from the authors’ interest in the general problem of 
flows around bodies located in non-uniform oncoming streams. It should be 
remarked here that Kawaguti (1956) investigated the low Reynolds number flow 
around a circular cylinder located in a uniform shear flow by regarding the shear 
as a perturbation on a uniform stream. However, characteristics of the wake 
behind such a cylinder were not considered in Kawaguti’s paper at all. There will 
necessarily exist an upper limit of the range of x where the solutions of wakes 
obtained by the perturbation analysis are valid. The limit will be considered later. 

For the sake of simplicity, a two-dimensional symmetrical body aligned 
parallel to the uniform shear flow is assumed in the present analysis. 

Finally, it may be noted that the motion in the wake at the large Reynolds 
number, which is the case of practical importance, is unstable with respect to 
infinitesimal disturbances, because the velocity profile in the wake has points 
of inflexion. For a slender streamlined body, the flow in the wake, even if steady 
just behind the body, becomes turbulent further downstream; whilst for a bluff 
body the flow in the wake is definitely not steady but quasi-periodic or turbulent 
when the Reynolds number is large. Therefore, it may be worth mentioning 
that there exists a similarity between the mean velocity profiles of the free 
turbulent shear flows such as wakes or jets and those of the corresponding laminar 
ones. The turbulent eddy viscosities for free turbulent shear flows in general have 
been found to be proportional to the product of the maximum velocity difference 
in the shear layer and its width. Since both are functions of the streamwise co- 
ordinate x, the turbulent eddy viscosities also become functions of x alone. 
The mean flow pattern of turbulent shear flows of such an eddy viscosity could 
be investigated as an extension of the laminar theory. Moreover, a fundamental 
understanding of the equivalent laminar flow problem is always necessary 
before embarking on a phenomenological analysis of a turbulent flow. 
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2. Basic equations 
We introduce a Cartesian co-ordinate system (x, y), where x is the streamwise 

distance measured from an appropriate point near the obstacle and y is the normal 
distance measured from the x axis; the corresponding velocities will be denoted 
by u and v, respectively. Motions of the fluid are governed by the Navier-Stokes 
equations and the equation of continuity. For incompressible flow, when the 
stream function Y is introduced by the usual definition 

a\rlay = U, aylax = -v, (2 -  1 ) 

the equation of continuity is automatically satisfied. The Navier-Stokes equations 
for the two-dimensional steady flow of an incompressible viscous fluid are then 
written in the form 

where A = a2/ax2+a2/ay2, v is the kinematic viscosity and w is the vorticity, 
defined by 

At infinitely large distances, the components of the fluid velocity are assumed to 
be 

u = avlax - a u p y  = -AT. (2 .3)  

U, = U+Gy, V, = 0, (2 .4)  

where U and G are constants. Then, the stream function Ta corresponding 
to  (2.4) becomes 

'Fa = [w,cly = Uy+iGy2. (2 .5 )  
J 

If we write 

we have from (2 .1 )  
Y=Y,+$, 

u = U + Gy + a$py, 

v = -a$px, (2 .8)  

so that a$/ax and aljr/ay will be small a t  large distances from the obstacle. Thus, 
we can write (2 .3 )  and (2 .2 )  in the forms 

w = - (Gt-Aljr), (2.9) 

(2.10) 

where 2k = U / v  and a = GlU.  The form of (2 .10)  makes it plausible to assume the 
following forms for ljr and w :  

where 

(2.11) 

(2.12) 

(2.13) 
20-2 
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Substituting (2.11) into (2.9) and (2.10) and comparinglike power sofa, weobtain 

(2.14) 

Since the vorticity in the original inviscid stream, which is -G, is constant, 
Kelvin's law of vorticity requires that the flow outside the wake region be 
governed by 

A$, = A$2 = 0. (2.16), (2.17) 

Therefore, (2.14) and (2.15) are understood to form the fundamental equations 
for the flow in the wake region, while (2.16) and (2.17) show that the flow field 
outside the wake region can be determined by means of potential flow theory. 
Some constants which will appear in the solutions can be obtained by the match- 
ing conditions at the edge of the wake. The matching conditions and the boundary 
conditions will be discussed in the course of the following analysis. 

Since $l represents the solution for a = 0, it should be understood to describe 
the wakes behind obstacles located in a uniform stream. Therefore, 3h2 gives the 
first-order effect of the main-stream shear on the flow in wakes. 

3. Solution for @1 
The laminar far wake behind any symmetrical obstacle in a uniform stream, 

which is described by @l, has been well established by previous investigators. 
Here the results of Imai (1951) will briefly be summarized for later reference, 
because use must be made of $l in order to determine 9k2. 

For sufficiently large x, a$.,/ax and a$Jay are small compared with U and, 
therefore, the first approximation to $1 or w1 can be calculated by neglecting the 
terms in (2.14) that are quadratic in a$,/ax and a$,/ay. If the first approximation 
to o1 is denoted by wf), wil) now satisfies the equation 

Awl') - 2k aoil)lax = 0. (3.1) 

Introducing the complex variables 

2 = x+iy, g = [+ivy 
related by the equation 

Imai obtained the solution of (3.1) in the form 

2kz = y, 

(3.3) 

Here 9 means 'the real part of ' and m is a constant related to the fluid density 
p and the drag D of the obstacle by the relation 

WL = D/pU. (3.4) 



Laminar far wake behind a two-dimensional body 309 

Equation (3.3) now yields 

where 

Equation (3.5) is valid throughout the flow region at a considerable distance from 
the obstacle, both in and outside the wake. Especially, it should be remarked 
that, in the region outside the wake, y5f) takes the form of 

$9) = 9 ((m/2nU) log 21, 

in which 4 stands for ‘the imaginary part of ’. 

higher order approximations in the following forms: 

with 

By applying an iteration procedure starting with $I1), Imai obtained the 

$1 = $.I”+@I”’+$[3)+ ..., (3.6) 

(3.7) 
km2 1 

I,@ = - 4ngU2 (2) erf 29 7 - e-7’ erf q), 

b 3  1 
4877U3 t2 +--{a x 3tye”l’ R(7) - 14 x 38(erf 3ty - erfy) 

+ 12 x 24e7a erf24q +6 e-2’aerfy + 371-47e7~ (erfq)2 - 12 x 38erf T,I 

- 4  x 34n-+(log5) q e - ~ ’ ) + ~ ~ q e - ~ ,  (3.8) 
B 1  

(erf 34 q - erf 7) ella dq, 

$1 = m z ) } ,  (3.9) 
in the wake, and 

with 
m2 logz a +;+..., (3.10) 

m k9m22 + (38km3 
f ( z )  = -1ogz-i-- 4n4U z ---)- 

2nU 8nW3 2n2U2 z 

for the region outside the wake. Here, B and a are real constants which cannot 
be determined from any boundary condition on the far wake. These constants 
have been believed to be connected in some way with the flow near the obstacle, 
which is neglected in the far-wake analysis (Stewartson 1957). 

4. Solutions for $2 

4.1. First approximation 
When x is large, the terms on the right-hand side of (2.15) that are quadratic in 
small quantities can be neglected for the first approximation wf) .  Then we have 

or 
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Remembering (3.2), we have the relations 
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and 

where 

Substitution of (3.3) into the right-hand side of (4.1), together with the above 
differentiation formulae, yields 

Since the operation 
115, we can integrate (4.2) twice with respect to 1 to obtain 

is equivalent in order of magnitude to multiplication by 

On using the relation up) = - A@il), we have 

in which 
D@g) = (2m/n&kU) f;(q2 + I )  e-+ +O(C-'), (4.3) 

(4.4) 

Assume the solution of (4.3) to be of the form 

@P = 67s1(7) + O(S-l), (4.5) 

where gl(7) is a function of 7 alone. Substituting (4.5) into (4.3) we have 

g; + 2 (1 + ;) s; = a 2m (7 + f) e-qa, 

the prime implying the differentiation with respect to 9. The general solution of 
(4.6) is 

in which Cl and C2 are constants of integration and 

(4.7) 
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 FIG^ 1. Velocity components in the first approximation. 

Since g, -+ & in37 and g,, -+ rf: nby as 7 + rf: co, we have from (4.7) 

$hl) = &{CZ (5m/8kU - dc,)). ( 4 4  

It should be noted here that the flow outside the wake region must be matched to 
(4.8) at the edge of the wake. Remembering that (3.2) gives 

2ky = 2c7, 2kx = $'-y2, 

we can obtain the flow outside the wake region which matches to (4.8) in the form 

$p = 9{ wp>, (4.9) 

where Wi? = {C, k (5m/8kU- ntC,))kz, (4.10) 

the rf: signs standing for Y(z) 0. Equation (4.10) yields the constant velocity 
components 

throughout the whole region outside the wake. Since non-zero velocity com- 
ponents a t  y -+ rf: co which are induced by the displacement effect of the wake are 
unacceptable for physical reasons, we must put 

d WL1)/dx = UL1) - i Vhl) = k{C, 5 (5m/8k U - n*C,)}, 

C, = 5m/8n&U, C, = 0. 

Therefore, $jl) can be determined as 

$p = - (m/4n&U) +$) e-v2 + O(t-l), (4.11) 

which yields the velocity components 

up) = a$!jl)/ay = (m/4n+U) 7(272+ 3) e-++ O(c-2), 

v$' = - a?+p/ax = - 
8n*U 

(4.12) 

(4.13) 
m l  

(474 + 8q2 + 5 )  e++ O(6-3). 
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The profiles of uil) and vL1) are plotted in figure 1. It may be noted that uil) is 
antisymmetric with respect to the 7 axis. 

4.2. Second approximation 
To find the second approximation, we write 

$2 = qp+qy. 
Then, @i2) satisfies the equation 

(4.14) 

(4.15) 

Substituting ( 3 4 ,  (3.7) and (4.1 1) into the right-hand side of (4.15) and rearrang- 
ing the terms, we obtain 

5-2 7 YZ” + - ~-”‘( 2 y’ + 7 Y”) - - k2m2 k2m2 
4nu2 4nu2 

where 

(4.16) 

X = 24 erf247 - e-‘la erf 7, 

Y = e-w’, Z = (2v2 + 5 )  e-7’. 

The term in curly brackets in (4.16), which is of order [-3, should be considered 
in the third approximation. The terms of order 6-2 will then be retained in the 
second approximation. Integrating (4.16) twice with respect to 7, we obtain 

wf)+ 2k a$p/ax = (lczm2/4nu2) ~ - - 2 ~ ( 7 )  + o(g-3), 
in which 

Q(7) = (5 - 272) e-2va - 2~+(273+7)  e-T’erf 7 + 2(2n)47 erf 247, 

Substitution of the relation wL2) = -A$:) into the left-hand side of (4.17) yields 

& @ )  = - ( m2/4nU2) &(7) + O(6-l). 

(4.17) 

Putting 

and dropping the terms of order higher than to, we have 

@i2) = (m2/4nU2) g2(7) + O(6-1) (4.18) 

d + 279; = - Q(7).  

The general solution of this equation is easily found to be 

g2(7) = - $ (72 + g) e-27’ - in9 (73 + 37) e-7’ erf 7 
- (2n)t 7 erf 247 + $Cn* erf 7, (4.19) 

where C is a constant of integration. It should be noted that another constant of 
integration can be added to the right-hand side of (4.19), but this constant can be 
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FIGURE 2. Streamwise velocity oomponent in the second approximation. 
--- , c = 2.0; -, Q = 0; --- , c = -2-0. 

put equal to zero without loss of generality. Like the constants B and a in (3.8) 
and (3.10), respectively, C cannot be determined from the boundary conditions 
on the far wake. A tentative physical meaning of C will be discussed later. 

The flow field outside the wake region will now be determined. Since 

g,(7) -+ T (2.rr)* (7 - C/2%) as 7 -f 5 m, 

we have, from (4.18) and (4.19), 

(4.20) 

at the edge of the wake. Therefore, the flow outside the wake, which should be 
matched to (4.20), can be determined as 

$f) = Y{Wf)>, 
where 

The velocity component in the x direction given by (4.18) and (4.19) is 

- (27r)* erf 2* 7 + Cell'}, (4.21) 

which is plotted in figure 2 for a few values of C. It is worthwhile to note that the 
term Ce-? in the curly brackets introduces a symmetrical component into .ui2), 
while all the remaining terms give the antisymmetrical profile. 
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4.3. Third approximation 
The third approximation can be obtained in the same way as the second approxi- 

$% = $p + $p + qp. (4.22) mation. Write 

By substituting (4.22) into (2.15) and retaining the terms of order &510g[ and 
5-5, we have 

a$L2)aw(l) k4m2 

ax ay 4 = ~ u 2  
- - 2) + - E-5 (Y,LZ”’ - 2”) + o ( E - ~ ) ,  (4.23) 

in which the last term on the right-hand side corresponds to the term in curly 
brackets in (4.16) in the second approximation. Substitution of the above results 
into the:right-hand side of (4.23) yields, after straightforward but lengthy calcula- 
tions, 

[-3{2n71[(72E”)’ + 2(7E’)’ - 2E’] + [(y Y”)’ - Y ]  

Bk 
- 2(XZ”)’] -z5-3[(q2Y“‘)’+2(qY”)‘-2Y”]+~(g-3),  

(4.24) 
where we have put E = erfy, 

Q3 = 4 x 347 e-v2R(7) - 14 x 34 (erf 337 - erf 7) + 12 x 24 e-7’ erf 2 ) ~  
+ 6 e-2va erf 7 + 3n.t- e-7’ (erf 7 ) 2  - 12 x 34 erf 7, 

Proceeding just as in the derivation of (4.17), we find 

Bk k3m3C 
--@ P 3 ! 2 ( 7 )  - 2&7T3 5-3 erf 247 + o (&-a), (4.25) 
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with Pl, F2 and F3 given by 

Fl(7) = (q4 + q2 + ?-) e-7’ + 47d q erf 9 ,  

F2(q) = 2(2q4 - 72- 1)  e-T’, 

F3(q) = 8 x 3*( 1 + q2 - 2y4) e-P]’ R(y) + 8 x 3& q3 (erf 3i 7 - erfq) 

+8(3/n-)*(2q2+ l)e-7’+(6/7r*)(21-2~2)e-378 

+ 18x 29(7-273)e-72erf2*7+60ye-272erf7 

-k 6n3( 1 + q2 - 2q4) e d ’  (erf q)2 

+ 4 8 x  3tqerf347-36 e-2?’’er€qdq. 

In  view of the relation uL3) = - A$i3), equation (4.25) can be reduced to 
so” 

(4.26) 

To find an appropriate solution of (4.26), we first consider the equation 

= (m2/nP U2)  k l p q q )  +log gB!!(q)). (4.27) 

Assuming $“b3) = (m2/n’U2) C-’(g31(7) +log 5932(7)}, (4.28) 

and dropping the terms of order higher than 6-1, we have 

dl 27g& + 2g31 = pl + 2g32, (4.29) 

9;2 + 2w;2 + 2g32 = F2* (4.30) 

The general solution of (4.30) is 

gsa(7) = - (+v4 + q2)  e-q’ + C331e-w’ eV2dy + C32e-7a, (4.31) 

where C31 and C3, are constants of integration. The second term on the right- 
hand side of (4.31) obeys 

so” 

C31e-72 e7’dq N C31(.2q)-1{1 + (272)-1+0(7-4)) 
S O 7  

as q-f  f co. Thus, this term gives rise to a term C31(26q)-1 = C31(2ky)-1 in @g), 
which does not satisfy the requirement that the vorticity in the wake should 
exponentially tend to that in the flow outside the wake as the edge of the wake is 
approached (the principle of rapid decay of vorticity; Chang 1961). Accordingly, 

(4.32) 
we put c3, = 0. 

Another constant C3, remains to be determined. Substituting (4.31) with (4.32) 
into (4.29) and integrating the resulting equation, we obtain 
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C3, and C3, being constants of integration. Since the term 
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e-TaIOq eqa erfydy, 

in the same manner as the term 

does not satisfy the requirement of the principle of rapid decay of vorticity, we 
obtain 

Therefore, the solutions of (4.29) and (4.30) can be determined as 

c - -XI- 32 - 8 7 c33 = O* 

!?31(7) = G31(7) + cle-v2, (4.33) 

932(7) = G32(7), (4.34) 

G31(7) = 272e-q' + n* 7 erf 7, (4.35) 

in which C, is an arbitrary constant and 

G 3 2 ( ~ )  = - 472 (72 + -23) e-7'. 

Next, consider the equation 
(4.36) 

D1C.p = - (kms/48nU3) 6-l {F3(7) + 4(3/m)*log@2(7)}. 

d 3  + 279;3 + 2g3, = p3 + 2934% 

(4.37) 

Assuming 

we have 

$k3) = - (km3/48nU3) 5-' {!?33(7) + 1% t934(7)}, (4.38) 

gk + 2%& f 2g34 = 4(3/n)& Fz. 

These equations can be solvedin the same manner as (4.29) and (4.30). The results 
are 

(4.39) 933(7) = G33(7/) + c2 e-va, 

934(7) = G34(7)% (4.40) 

where C2 is an arbitrary constant and 

G33(p) = 2 x 34(y4 -t- 2y2 + 2) e-aR(y) - 33;(v3 +&I) (erf 3*7 - erf y) 
+(3/n+) (2ya+7)e-3qa-(3/n)8y2e-8*+ 12 x 3iyerf347 
+ 3 x 24 (273 + 37) e-8' erf 247 + 37(72 + $) e-Q' erfq 

+ +'-e-va e-t2 erf t dt + 3nt 7 2  ( 4 7 2  + 1) e+ (erf y)2 

f 36 e-q'fu? {S(y) -AS'( + co) erf y} ella dy, 

s," 

G3,(7) = - (3/7i-)3; (2y4 + 4y2 + Q )  e-' - (36/n*) e d  S( +GO), 

It should be pointed out that X(y) is an odd function of y. 
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Consider the equation 
D$i3) = ( B / k U )  l - 'P2(~) .  

Putting $i3) = (B/lcU) c-1g35(7), we have . 

9:5 + 27g& + 2935 = 32(%9.  

Since g3, satisfies the same equation as g32, the solution becomes, from (4.31), 

935b) = Q d 7 )  + c3 e+, 

where C, is an arbitrary constant of integration and 

G3,(7) = - 72(Q72 + 1 )  e-q*. 

(4 .41)  

Finally, consider the equation 

D@ i3) = ( km3C/2h U3) 5-l erf 247. 

When the solution of this equation is assumed to be of the form 

g36 satisfies the equation 

The solution is 

where 

C, being arbitrary. 
1~ should be remarked here that, in obtaining the solutions of g,,-g,, the 

principle of rapid decay of vorticity has been applied to determine the constants 
of integration other than C,, C, and C4. 

From the foregoing analysis the solution in the wake region in the third 
approximation is given by 

p;) = ( h 3 c / 2 b u 3 )  g-lga(7), 

gl6 + 27gi6 + 2g3, = erf 2*7. 

936(r) = G36(7) + c4e-9*, 

G36(q) = ierf  247 - 2-8 e-7' erf 7, 

(4.42) 

where C' is an arbitrary constant which cannot be determined from the boundary 
conditions on the far wake in a uniform shear flow. It may also be noted that the 
term multiplied by the undetermined constant C' in the third approximation 
yields an antisymmetrical part of the velocity component dj3) ( = a$-(,")/@) in the 
same manner as the remaining terms other than that multiplied by C. 

To find the flow outside the wake in the third approximation, we note that 

G 3 1 + + d y ,  G,, -+ & 12 x 347, G36 +?Q as 7 -+&co. 

Then, @h3) behaves asymptotically according to 

(4.44) 
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Accordingly, the flow outside the wake which matches to (4.44) is determined as 

where 
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Il.i"' = ,a(WP)), 

the +_ sign standing for 9 ( z )  i 0. 

5. Discussion of results 
From the above analysis, the stream function representing the flow of an in- 

compressible viscous fluid past a symmetrical two-dimensional body located in a 
uniform shear flow has been obtained asymptotically both in and outside the 
wake region. Since the analysis is based on the assumption that the shear can 
be regarded as a perturbation on a uniform stream, the region where the present 
solution is valid must be clarified. Noting that the solution has been obtained by 
an iterative procedure which starts from the solution of the linearized form of 
(2.14), we have, as an approximate estimate, 

p j q ) ( X ,  Opyl e 1. 

8$11)(z, 0)pJ = - (km/nHJ) (2kz)-4, 

(2h)) 9 km/n4U. 

Since, from (3.5), 

the condition (5.1) yields 

Moreover, as is inferred from (3.3), the far wake in a uniform stream is limited to 
the region in which 7 is of order unity. This fact implies that the far wake is a 
vaguely parabolic region described by 8 = 0{(2kx)-9},  which gives an estimate 
of the width of the wake 8 as 

s = O{x(2kx)-%}. (5.3) 

In  order that the shear can be treated as a perturbation on a uniform stream, 
Qhe shear length defined by U/G = u-l must be much larger than 6, i.e. 

or 

Combining (5.2) and (5.4), we finally obtain 

km/n*U < (2kx)t. < k/a .  (5.5) 

Here it should be added that (5.5) is applied both in and outside the far-wake 
region. 

The asymptotic solution described in the present analysis contains four con- 
stants a ,  B,  C and C' which cannot be determined from the boundary conditions 
for the far wake. As was initially demonstrated by Stewartson (1957), these 
constants will be connected in some way with the flow field in the vicinity of the 
wake-producing obstacle, which is neglected in the asympt,otic analysis. Mathe- 
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matically, the terms which are multiplied by B, C and C', respectively, are the 
solutions of (A - 27ca/ax) @ = 0, while the term multiplied by a is the solution 
of A$ = 0. It should here be pointed out that the terms multiplied by C introduce 
the symmetrical parts into the velocity components u, ( = a@-,/ay), which repre- 
sents the effect of the uniform shear of the main flow, although all the other 
terms up to the third approximation yield the antisymmetrical parts. As a result, 
the defect of flow rate in the wake, which can be defined as 

q = j + m ( u + K y - u ) d y ,  -03 

is written in the form 

!I = - ~{lC.l(!L + 00) - lC.l(E, - 4) - G{$Z(L + 00) - $-2(E, - 4 1  
( Gm2C)+( -_- km2 GkmaC)l - + o(E-1). 
m-- - - 

4 n m  ( 2 n ) 4 ~  2 Q d 3  g 

In  the same manner, the momentum defect M in the wake can be evaluated as 

M = ( V + K y ) ( U + K y - u ) d y  
-m 

= pmU -pGm2C/4n.lUz+ O(E-l), (5.7) 

which, in the limit k --f 00, could be interpreted as the drag force acting on the 
body placed in the uniform shear flow. However, since there exists the upper 
limit on x given by (5.5) or, in terms of (, 

m/2dv 4 5 < U2/vG, 

beyond which the present analysis is not valid, we cannot take such a limit in a 
strict sense. Nevertheless, it is the authors' impression that the constant C will 
have some connexion with the drag force acting on a symmetrical obstacle in a 
uniform shear flow. 

In order to show more clearly the characteristics of wakes in a uniform shear 
flow, the velocity profiles in the wakes will now be examined. Consider a sym- 
metrical body with representative length Z and define the drag coefficient C, and 
Reynolds number Re by 

CD = D/&pU21, Re = Ul/jJ, 

respectively. It should be remembered that C, means the drag coefficient when 
the obstacle is located in a uniform stream u, = U. Then, the velocity defect w 
in the wake, which is defined by 

becomes 
= ( u + G ~ J - ~  = -a$/ay, 

- w/U = tCDRei {(x/Z)+ gP) (q )  + &'DRe+(x/Z)-lg$z)(q) + O[(x/Z)+tog (x/Z)l} 
+ &%(Gz/u) {dl)(r) f $cDRe'(x/z)-t ghz)(r) + o[(x/z)-l log (x/z)l], 

(5.8) 
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FIGURE 3. Velooity-defect profles in the far wBke of a flat plate of length 1. 

ClIU = 0.25, Re = 100, C = 0. 

where 

gkl)(r) = - n-4 e-qa, 

gi2)(q) = - (27r4-1 (n-) e+ + q e-q' erf q) ,  

gil)(q) = (4n4)-l7(2r2 + 3) e-q', 

gi2)(q) = (4nB)-l((y3+~r)e--2qa+n4(r4+r2--) e-q'erfq- (2n)ierf24q+Ce-qa}. 

In  deriving (5.8), we have used the fact that, in the wake region 5, almost satisfies 

6 = (2lcx)i = Ret(x/Z)t. 

Moreover, in terms of xll, CD and Re, the condition (5.5) can be rewritten as 

CDRet/4n* < (x/:/E)t 4 Re&( UIGZ). 65-91 

As an example, a finite flat plate of length I aligned parallel to the main flow 

&C,,Re* = 1.328+4-12Re-t. (5.10) 

The numerical calculations have been performed for the case Re = I00 and Gl/ 
U = 0.25 together with an arbitrarily chosen value of C = 0. In  this case, (5.9) 
becomes approximately 

0.25 < (x/l)* 4 40. 

The results are shown in figure 3, which gives the velocity-defect profiles at 
various sections downstream the plate. It can clearly be seen in the figure that the 
asymmetrical feature of the velocity defect becomes more evident as x increases. 
The width of the wake extends to the low-velocity side more than to the high- 
velocity side, and the point which shows the maximum velocity defect shifts to 
the low-velocity side. 

will be considered here. The drag coefficient has been given by Kuo (1953) as 
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